

# Live Surgical Assessment of Laparoscopic Competence: A Comparative Study of Simulation versus Traditional Training Modalities.

Dr. Momina Mustafa<sup>1</sup>, Dr. Muhammad Zarin<sup>1</sup>, Dr. Zia Ullah<sup>1</sup>

<sup>1</sup>Department of Surgery, Khyber Teaching Hospital, Peshawar.

## AIMS & OBJECTIVES

The aim of this study is to evaluate and compare the laparoscopic surgical competence of resident surgeons trained through two different modalities:

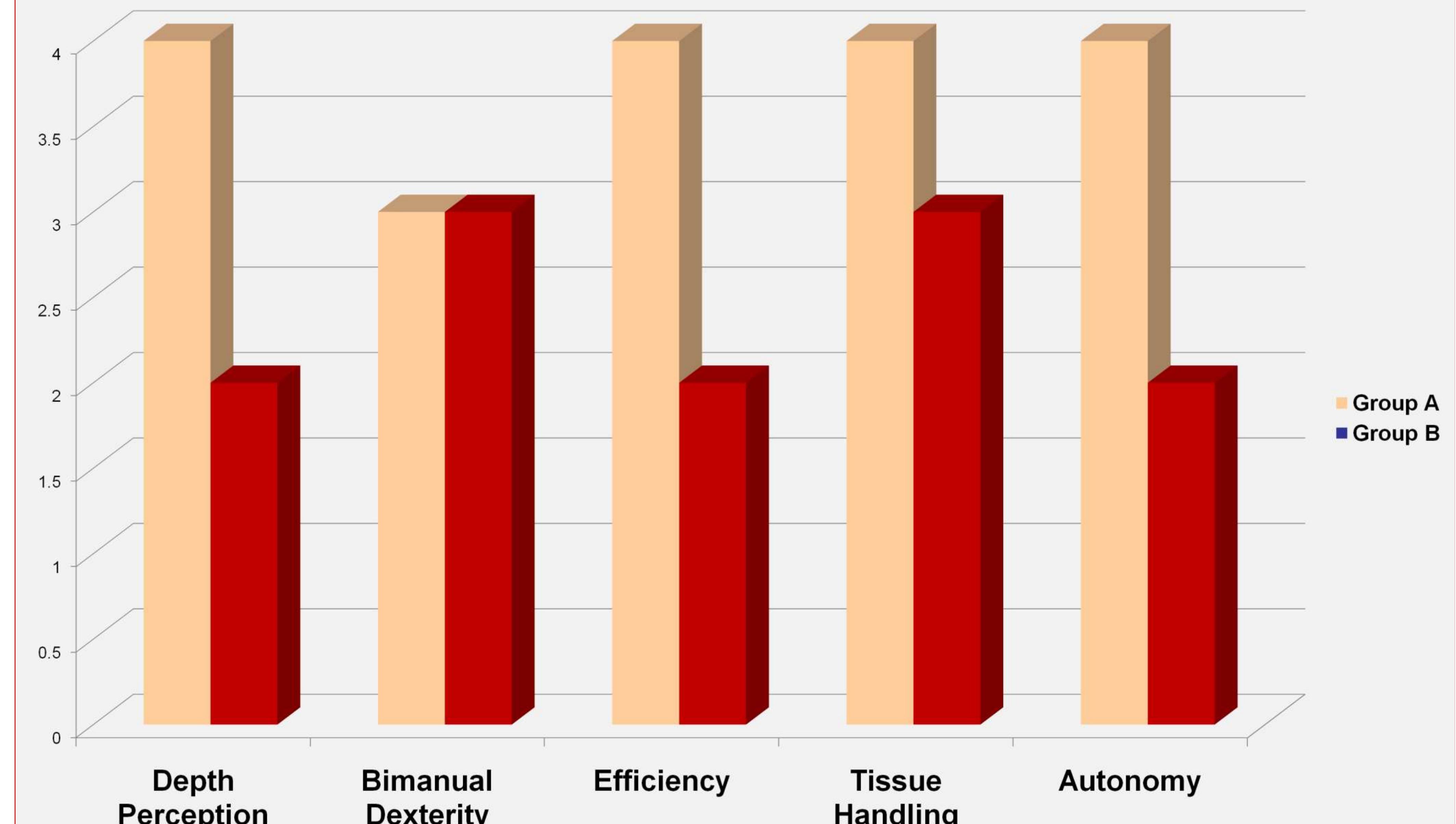
- simulation-based training (Group A)
- traditional operative training (Group B)

Using the Global Operative Assessment of Laparoscopic Skills (GOALS) score, the study assesses the **technical proficiency, accuracy and efficiency** of participants during a live laparoscopic cholecystectomy.

➤ The findings are intended to inform future surgical training frameworks and support evidence-based enhancements in residency education.

## METHODS

➤ Prospective cohort study.  
➤ This duration of this study was March, 2025 to September, 2025.  
➤ Non probability consecutive sampling.  
➤ All eligible final year general surgery residents at Khyber Teaching Hospital were invited (total eligible N = 28). For the comparative two-group analysis this yields n = 14 per group


➤ Members from each groups were asked to perform a laparoscopic cholecystectomy (after appropriate approvals from Hospital ethical committee and consent from patients) and their skills were observed by two senior surgeons and scored based on the **“Global Operative Assessment of Laparoscopic Skills (GOALS score)”**

## Global Operative Assessment of Laparoscopic Skills (GOALS score)

|                           |                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Depth perception</b>   | 1. Constantly overshoots target, wide swings, slow to correct<br>3. Some overshooting or missing of target, but quick to correct<br>5. Accurately directs instruments in the correct plane to target                                                                                                                                                     |
| <b>Bimanual Dexterity</b> | 1. Uses only one hand, ignores non dominant hand, poor coordination between hands<br>3. Uses both hands, but does not optimize interaction between hands<br>5. Expertly uses both hands in a complimentary manner to provide optimal exposure                                                                                                            |
| <b>Efficiency</b>         | 1. Uncertain, inefficient efforts; many tentative movements; constantly changing focus or persisting without progress<br>3. Slow, but planned movements are reasonably organized<br>5. Confident, efficient and safe conduct, maintains focus on task until it is better performed by way of an alternative approach                                     |
| <b>Tissue handling</b>    | 1. Rough movements, tears tissue, injures adjacent structures, poor grasper control, grasper frequently slip<br>3. Handles tissues reasonably well, minor trauma to adjacent tissue (i.e. occasional unnecessary bleeding or slipping of the grasper)<br>5. Handles tissues well, applies appropriate traction, negligible injury to adjacent structures |
| <b>Autonomy</b>           | 1. Unable to complete entire task, even with verbal guidance<br>3. Able to complete task safely with moderate guidance<br>5. Able to complete task independently without prompting                                                                                                                                                                       |



## RESULTS



## CONCLUSION

- ✓ Simulation-based laparoscopic training significantly enhances surgical competence.
- ✓ Residents trained through simulation demonstrated superior laparoscopic skills across most domains particularly depth perception, efficiency, tissue handling, and autonomy.

## KEY TAKEAWAYS

- Simulation based surgical training is the absolute need of the time.
- Simulation-based education promotes **patient safety** by refining technical skills before real operative exposure.
- Access to simulation facilities bridges the gap between **training hospitals and global surgical standards**.

